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ABSTRACT
A cognitive assistance application combines a wearable de-
vice such as Google Glass with cloudlet processing to provide
step-by-step guidance on a complex task. In this paper, we
focus on user assistance for narrow and well-defined tasks
that require specialized knowledge and/or skills. We de-
scribe proof-of-concept implementations for four tasks: as-
sembling 2D Lego models, freehand sketching, playing ping-
pong, and recommending context-relevant YouTube tutori-
als. We then reflect on the difficulties we faced in building
these applications, and suggest future research that could
simplify the creation of similar applications.

1. An Angel on Your Shoulder
GPS navigation systems have transformed our driving ex-

perience. They guide you step-by-step to your destination,
offering you just-in-time voice guidance about upcoming ac-
tions that you need to take. If you make a mistake (e.g.,
miss an exit), this is promptly recognized and corrected.
The difficult task of navigating an unfamiliar city has been
transformed into a trivial exercise in following directions.

Imagine generalizing this metaphor. A wearable cognitive
assistance system combines a device like Google Glass with
cloud-based processing to guide you through a complex task.
It feels just like following the directions of a GPS navigation
system. You hear a synthesized voice telling you what to do
next, and you see visual cues in the Glass display. When
you make an error, the system catches it immediately and
corrects you before the error cascades. This futuristic genre
of applications is characterized as “astonishingly transfor-
mative” by the report of the 2013 NSF Workshop on Future
Directions in Wireless Networking [1].

In its most general form, cognitive assistance is a very
broad and ambitious concept that could be applied to vir-
tually all facets of everyday life. Our initial goal is much
more modest. We focus on user assistance for narrow and
well-defined tasks that require specialized knowledge and/or
skills. Figure 1 presents some hypothetical use cases.
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Sara sees Mr. Stanley drop his glass of water, clutch his chest
and fall to the ground. She yells“Call 911”and heads for the wall-
mounted Automated External Defibrillator. She dons the assistive
Glass device that comes with it. It directs her to move Mr. Stanley
away from the water. It then tells her to dry his chest before
mounting the pads. When she tries to mount them symmetrically,
it warns her that the left side is placed too high. Soon, the AED
jolts Mr. Stanley back to life.

(a) Medical Training

Alice is a member of the Air National Guard. This weekend her
assignment is to check the cockpit instruments on a cargo plane.
She has observed the procedure just once, over a year ago. She
asks her cognitive assistant for help. Her Glass device takes a
picture of the instrument panel, recognizes the access point, and
displays a picture of the panel with the access point highlighted.
Alice is now easily able to take her readings, and finishes her task
ahead of schedule.

(b) Industrial Troubleshooting

Figure 1: Cognitive Assistance Scenarios

In the past year, we have built proof-of-concept implemen-
tations for four different tasks: assembling 2D Lego models,
freehand sketching, playing ping-pong, and recommending
context-relevant YouTube tutorials. Although these are not
yet production-quality implementations, they do address im-
portant real-world constraints and have taught us a lot. Our
goal in writing this paper is to share the lessons and insights
that we have gained from these implementations. We begin
by briefly describing Gabriel [5], their common underlying
platform. We then describe the four applications. Finally,
we reflect on future research to simplify the creation of such
cognitive assistance applications.

2. The Gabriel Platform on OpenStack++
Cognitive assistance applications are both latency sensi-

tive and resource intensive because they are shaped by the
demands of human cognition. Many everyday tasks that
humans perform effortlessly are exquisite feats of real-time
analytics on multiple sensor stream inputs. For example, a
human conversation involves many diverse inputs: the lan-
guage content and deep semantics of the words, the tone in
which they are spoken, the facial expressions and eye move-
ments with which they are spoken, and the body language
and gestures that accompany them. All of these distinct
channels of information have to be processed and combined
in real time. Similarly, an assistive system that augments
cognition has to apply enormous computing resources to the
same video and audio sensor streams to produce real time
response to the human user.

For reasons that have been discussed extensively in ear-
lier papers [5, 6, 15], the only viable approach to consis-
tently meeting these processing and latency demands is to
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Figure 3: Lego Task

perform sensing and interaction on a wearable device (such
as Google Glass), while offloading almost all processing to
a decentralized cloud computing element called a cloudlet
that is located just one wireless hop away. Only through
this approach can we offer crisp interaction while allowing
devices to have acceptable battery life and to remain small,
lightweight, and cool enough to wear.

Our cloudlets run Linux-based OpenStack++ [17]. This
is a derivative of the widely-used OpenStack platform [14]
for cloud computing, with extensions for cloudlet discovery,
rapid provisioning, VM handoff, and other cloudlet-specific
functionality. On top of OpenStack++, we have created the
Gabriel platform for wearable cognitive assistance applica-
tions. Its goal is to allow developers to focus on application-
specific issues, by factoring out difficult-to-implement func-
tionality that is often needed by members of this class of
challenging applications. Gabriel offers “plug-and-play” sim-
plicity in creating or reusing cognitive engines such as face
recognition, object recognition, and speech recognition.

Figure 2 illustrates Gabriel’s back-end processing struc-
ture. An ensemble of cognitive engines, each encapsulated
in a virtual machine (VM), independently processes the in-
coming flow of sensor data from a Glass device. In the appli-
cations described in Sections 3 to 6, the application-specific
computer vision code is implemented as a cognitive VM. A
single control VM is responsible for all interactions with the
Glass device and preprocessing of incoming streams. Gabriel
uses a publish-subscribe (PubSub) mechanism to distribute
the sensor streams from control VM to cognitive VMs. The
outputs of the cognitive VMs are sent to a single User Guid-
ance VM that integrates these outputs and performs higher-
level cognitive processing. From time to time, this process-
ing triggers output for user assistance.

The context inference module in Gabriel understands a
user’s context using outputs from cognitive engines, and ad-
justs Glass’s sensing and transmission policy accordingly. In
its simplest form, it turns on/off a particular sensor based
on applications’ needs. For more fine-grained control, the
offload shaping technique can be used [7]. For example, if
all cognitive engines require sharp images as input, detect-
ing blurry frames on the mobile device and dropping them
before transmission can save wireless bandwidth, improve
cloudlet scalability and enhance battery life. This early dis-
card idea is a good complement to the general rule of pref-
erential processing on cloudlets.

3. Lego Assistant
The first application we have implemented is a Lego As-

sistant that guides a user in assembling 2D models using
the Lego product Life of George [13]. Figures 3(a) and 3(b)
show some example Lego models and the board on which
they are assembled. A YouTube demo can be found at
http://youtu.be/uy17Hz5xvmY.

3.1 Cloudlet Workflow
Video from the Glass camera is streamed to the cloudlet,

and processed there by the cognitive VM for this task. As
Figure 3(c) shows, the processing workflow for each video
frame has two major phases. In the first phase, the frame is
analyzed to extract a symbolic representation of the current
state of the Lego task. This phase has to be tolerant of con-
siderable variation in lighting levels, light sources, position of
the viewer with respect to the board, task-unrelated clutter
in the image background, and so on. The symbolic represen-
tation is an idealized representation of the input image that
excludes all irrelevant details. One can view this phase as
a task-specific “analog-to-digital” conversion of sensor input
— the enormous state space of the input image is simplified
to the much smaller state space of the symbolic represen-
tation. Technically, of course, all processing is digital. As
shown in Figure 4(m), the symbolic representation for this
task is a two-dimensional matrix with values representing
brick color. The second phase operates exclusively on the
symbolic representation. By comparing it to expected task
state, user guidance is generated.

This approach of first extracting a symbolic representa-
tion from the Glass sensor streams, and then using it exclu-
sively in the rest of the workflow, is also how the other tasks
(Sections 4 to 6) are implemented. We cautiously general-
ize from these four examples that this two-phase approach
may be the canonical way to structure the implementation
of any wearable cognitive assistance application. Broader
validation will be needed to strengthen this observation.

3.2 Extracting the Symbolic Representation
We use the OpenCV image processing library in a series

of steps that are briefly summarized below, using the video
frame shown in Figure 4(a) as a working example. The first
step is to find the board, using its distinctive black border
and black dot pattern. Reliable detection of the board is
harder than it may seem because of variation in lighting
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Figure 4: Lego: Symbolic Representation (Source: [16])

conditions. We subtract the original image by a blurred
version of it, and then threshold the difference to give a
robust black detector (Figure 4(b)). We find the boundary of
the board (Figure 4(c)), then the four corners (Figure 4(d)),
and then perform perspective transformation (Figure 4(e)).

Next, we extract the Lego model from the board. We
perform edge detection (Figure 4(f)), then apply dilations
and erosions to find the largest blob near the center of the
board (Figure 4(g)). Unfortunately, sole reliance on edge
detection is not robust. The sides of Lego bricks have more
texture than the surface, leading to uncertainty in detec-
tion. We correct for this by finding the sides using color
detection, adding them to the Lego shape obtained by edge
detection (Figure 4(h)), and then performing erosion to re-
move the side parts (Figure 4(i)). The amount of erosion
is calculated from the perspective transform matrix. For
robust color detection, we use the grey world color normal-
ization method [2].

In the final set of steps, we rotate the image to an upright
orientation (Figure 4(j)). Each pixel is then quantized to
one of the Lego brick colors (Figures 4(k) and 4(l)), with
magenta color representing uncertainty. Final assignment
of brick color is done by a weighted majority vote of colors
within the block, with pixels near the block center being
assigned more weight. Figure 4(m) shows the final matrix
representation. Figure 4(n) is synthesized from this matrix.

3.3 Generating Guidance
A task in our system is represented as a linked list of

Lego states, starting from the beginning state (nothing) to
the target state (the user’s goal). Based on the matrix rep-
resentation of the current Lego state, our system tries to
find an optimal next step towards the task target. If there

(a) Target (b) Polygon (c) Feedback
Figure 5: Guidance by Drawing Assistant

is a clear next step, we convey this to the user using both
verbal guidance (whispered instruction) and visual guidance
(animation on the Glass screen). If the user fails to follow
instructions, the user’s current state may not be in the pre-
defined state list. In such cases, our implementation tries to
be smarter, as detailed in a recent paper [16].

4. Drawing Assistant
In contrast to the Lego application, which is entirely new,

our second application explores the challenges of modifying
an existing application to provide wearable cognitive assis-
tance. The Drawing Assistant by Iarussi et al. [8] guides
a user in the classic technique of drawing-by-observation.
As originally implemented, the application requires use of
a special input drawing device, such as a pen-tablet. On
the computer screen, it offers construction lines for the user
to follow, recognizes the user’s drawing progress, and offers
corrective feedback. For example, Figure 5(a) shows a target
drawing that the user is trying to copy. The blue polygon
in Figure 5(b) is the outline generated by the Drawing As-
sistant, and Figure 5(c) shows the feedback provided by the
application in response to the user’s attempt to copy the
polygon. The color of the construction lines in feedback
images represents the correctness of different parts of the
user’s attempt: blue is good, red is bad. The dashed red
lines indicate erroneous alignment between corners.

This application, as well as many other similar ones [12],
require use of computer-friendly input (pen-tablet or mouse)
and output (screen). We wondered whether we could use
Google Glass to extend this application to work with arbi-
trary drawing instruments and surfaces: e.g., using pencil on
paper, oil paint on canvas, or colored markers on a white-
board. We have confirmed that this is indeed possible. Our
approach is to use Google Glass and cloudlet processing to
extract a symbolic representation of the user’s input. We
splice this extracted information into the existing guidance
logic of the Drawing Assistant, and the rest of the system
works with little change.

4.1 Extracting the Symbolic Representation
For ease of exposition, we assume that the user is drawing

with a pen on paper. The processing for other media (e.g.
colored markers on a whiteboard) is identical. To under-
stand a user’s drawing, the first step is to locate the paper
from any arbitrary background. Similar to the black detec-
tion problem in the Lego assembly task, detecting “white”
paper is not as easy as looking directly at the RGB values.
Therefore, we use an approach similar to the board localiza-
tion approach in the Lego Assistant to reliably detect the
easel surface (Figure 6(b)). This is followed by a quadri-
lateral detection which represents the paper (Figure 6(c)).
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Line and corner detection are then applied to transform the
paper image to a standard rectangle shape (Figure 6(d)).

The second step tries to identify all the pixels associated
with the user’s sketches. To do this, we use the difference of
Gaussian approach and thresholding to find darker areas in
the paper. However, as seen in Figure 6(e), this detection
can be noisy because of shadows and creases. Therefore,
we filter out the noisy parts based on their size, shape, and
distance to other components. The result is a clean poly-
gon (Figure 6(f)), which is the symbolic representation. As
mentioned above, this symbolic representation is fed to the
largely unmodified application in place of the pen-based in-
put it was designed for, and the feedback is sent back to be
shown on the Glass’s screen.

5. Ping-pong Assistant
To explore the impact of tight real-time constraints, we

have built a Ping-pong Assistant. Its goal is to help a user to
choose the optimal direction to hit the ball to the opponent.
Note that we are not trying to compensate for the lack of
the user’s own visual processing. That would be necessary,
for example, if we were to tackle the far more challenging
and difficult task of enabling a blind person to play. At this
early stage of our work, our goal is merely to help a novice
play a little better by whispering hints.

5.1 Extracting the Symbolic Representation
We use a 3-tuple as the symbolic representation. The

first element is a boolean indicating whether the player is in
a rally. The second element is a floating point number in the
range from 0 to 1, describing the position of the opponent
(extreme left is 0 and extreme right is 1). The third element
uses the same notation to describe the position of the ball.
We generate this 3-tuple for each video frame.

Table detector: As shown in Figure 7(b), simple color de-
tection can be used to approximately locate the table. To
accurately detect the edges of the table in spite of lighting
variation and occlusions by the opponent, we dilate the de-
tected area, use white table edges to remove low possibility
areas, and then use the Douglas-Peucker algorithm [4] to ap-
proximate the table area with polygons. Multiple iterations
of this procedure yield a clean final result (Figure 7(c)). The
top edge is also detected using the polygon information and
marked in green in the figure.

Ball detector: For every area whose color is close to yel-
low, we determine if it is the ball based on its shape, size,
position relative to table, and the ball’s position in the pre-

vious frame. Once the ball is detected (Figure 7(d)), we find
its coordinates in the input image and calculate its position
relative to the table by using the transformation matrix de-
scribed below for the opponent detector.

Opponent detector: Using the information obtained in table
detection, we rotate and cut the area above the top edge
of the table to get a square shape containing the opponent
(Figure 7(e)). Within this standardized area, we use three
approaches to locate the opponent. The first approach is
simple and fast, but error-prone. It assumes that the back-
ground is mostly white wall, and selects the area with least
white color (Figure 7(f)). The second approach is based on
human motion calculated by optical flow, using two consec-
utive frames as input. It samples the image and calculates
the flow at each sample point. The small green dots in Fig-
ure 7(g) are the sample points, while the arrows describe the
direction and magnitude of flow. By appropriate low-pass
filtering, we can find the position with strongest motion, and
hence the opponent’s likely location. The third approach is
similar to the second, but calculates flow only at detected
interest points (green circles in Figure 7(h)). The latency of
the symbolic representation extractor is about 70 millisec-
onds when only the first approach is used, but increases by
fifty percent when all the three approaches are combined
using a weighted average to improve accuracy.

5.2 Generating Guidance
Guidance is based on a recent history of states. For exam-

ple, if we see the opponent is standing at the right, and the
ball has been hit to the right several times, we will suggest
that the user hit to the left. Only speech guidance is pro-
vided, so the Glass screen is unused. The guidance is very
simple, just “left” or “right.” The same guidance will not be
repeated within three seconds.

6. Assistance from Crowd-sourced Videos
Millions of crowd-sourced tutorial videos exist online, and

YouTube itself hosts more than 83 million, covering a wide
range of tasks. To leverage this valuable resource, we have
built an application that uses video from Google Glass to
characterize a user’s context. It then searches a corpus of
pre-indexed YouTube tutorial videos, and returns the best-
match to be played on the user’s Glass. Imagine a user
learning to cook a new dish. Our application can deliver a
YouTube tutorial on making this dish using similar tools.
We call this application “YouTube Assistant” for brevity.
It offers non-interactive tutorials for a wide range of user
contexts by leveraging crowd-sourced YouTube videos.
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6.1 Extracting the Symbolic Representation
In contrast to previous applications, we operate on short

video segments rather than individual frames. Each seg-
ment is six seconds long, and two consecutive segments have
a three seconds overlap. Multiple video segments are pro-
cessed in parallel to improve throughput.

We compose previous works [9, 18] and use the workflow
in Figure 8 to discover user context. We first extract low
level features from the video segment, and then convert them
into a list of generic semantic concepts, such as scene, ob-
ject, person, and actions. This concept list is effectively the
symbolic representation. Figure 9 lists some example con-
cepts that we can detect. We further classify concepts into
activity categories. The activity category is combined with
the concept list to search for relevant tutorials.

Low level feature extraction: We extract dense trajectory
feature descriptors [18, 19] from each video segment. This
captures local points randomly sampled from each frame,
and tracks the points in a dense optical flow field. Alterna-
tively, low level features can be obtained from deep convolu-
tional neural networks [11]. Searching directly based on the
low-level features is extremely hard because they lack any
semantic meanings and have very high dimensionality.

Concept detector: We apply our off-the-shelf concept detec-
tor trained by the SPCL pipeline [9] to extract semantic
concepts. The 3,000+ semantic concepts recognized by this
detector represent a broad range of real world events. The
context detector is trained offline from over two million In-
ternet amateur video segments [10].

Activity detector: We further characterize the user’s task
with higher level activities based on the concepts detected.
For example, “cooking omelette” is an activity characterized
by the presence of object “egg” and “butter”, scene “indoor”
and action “cooking” or “moving arm”. By adding a concept
layer before the activity detection, we significantly scale up
the activities that can be detected.

6.2 Generating Guidance
We have downloaded about 72,000 tutorial videos from

YouTube and indexed them based on the video’s metadata
(titles and descriptions) and the semantic concepts extracted
from the video content. Once the user’s concept list and ac-
tivity is extracted, we use the standard language model [20]
to find the most relevant video tutorial from our video pool.
The YouTube link of the suggested video is then sent back
to the user. If the user taps his Glass device, the tutorial
will start playing using Android YouTube API.

7. Future Directions
When we began this work, the feasibility of providing step-

by-step, closed-loop, task-specific guidance using a Glass-
like wearable device was only a dream. We have now ver-
ified that such applications are indeed feasible. The Lego,
Drawing, and Ping-pong Assistants all react to a user’s task-
relevant actions with helpful guidance. The YouTube Assis-
tant is a hybrid: it uses sensor inputs to infer context, and
then uses this inference to provide guidance via a YouTube
video. While many improvements are possible in these As-
sistants, the feasibility of wearable cognitive assistance is no
longer in doubt. The versatility, generality and ease of use of
Gabriel as a “plug-and-play” platform is also confirmed by
our experience. Balancing these positive observations, we
have identified three areas where substantial improvement
is needed. We discuss these below.

7.1 Faster Prototyping
Much of the difficulty in building a cognitive assistant lies

in the computer vision part. While there has been amaz-
ingly fast progress in recognition tasks in the computer vi-
sion community, building robust systems from diverse view-
points and lighting conditions is still a challenge. OpenCV
helps, but is not enough. Even for a job as simple as color
detection, we still have to spend many hours in tuning the
parameters and making it robust across different lighting
conditions. An easy-to-use, GUI-based toolkit for quick test-
ing and debugging of OpenCV-based functions could signif-
icantly improve the application development cycle and en-
hance productivity.

Applications should also be able to easily reuse state-of-
art computer vision algorithms. For example, many assem-
bly tasks may depend on the best object detection library.
Facilitating this requires modification to the existing Gabriel
architecture. We can add another layer of library VMs be-
tween the control VM and cognitive VMs. They provide
results shared by many cognitive VMs, and can be easily
upgraded as new libraries are available. Tools to rapidly
adapt an existing detector to a specific application would
also help. This is currently a slow process involving manual
curation of training data and building each model afresh.

Implementing task-specific guidance is easy when user state
is limited, but becomes much harder as the state space ex-
pands. In the Lego Assistant, if we allow a user to select
his own path to building a model, the current approach of
matching a user’s state to a pre-defined list no longer works.
In such cases, the concept of “guidance-by-example” may
help. For example, could we record multiple experts per-



forming a task, extract the correct sequence of state changes
using symbolic representation extractor, and then suggest an
optimal next step based on these sequences?

7.2 Improving Runtime Performance
Extraction of a symbolic representation using computer

vision tends to be slow, even on a cloudlet. For example,
the YouTube Assistant currently takes one minute to ex-
tract context from a six-second video. Parallelism can offer
significant speedup in computer vision. Processing multiple
frames in parallel is easy, but exploiting parallelism within
a single frame is harder. We need tools such as Sprout [3]
to simplify this effort.

Generally, there is a tradeoff between the accuracy and
speed of a computer vision algorithm. The different oppo-
nent detection approaches in the Ping-pong Assistant is a
good example. Combining different algorithms for higher
accuracy has been extensively studied in the computer vi-
sion community. We wonder if we can combine different ap-
proaches for speed as well. For example, the accuracy of an
algorithm usually depends on image content, lighting con-
ditions and background. Since these are unlikely to change
much during a single task execution, we could test different
algorithms in parallel at the start of the task and then select
the optimal one for the rest of the task.

7.3 Extending Battery Life
The battery life of Glass is only tens of minutes for the

applications described here. In addition, it tends to get
too hot to be comfortable. There is a clear need to ex-
ploit task-specific opportunities for energy efficiency. For
example, there is typically a region of interest (ROI) that
captures task-related information in an image. The board
in the Lego Assistant and the paper in the Drawing Assis-
tant are examples. The ROI typically does not move much
between consecutive frames, and this can be used to reduce
data transmission and cloudlet processing.

We can also exploit the fact that full processing and new
guidance are only needed when task state changes. It may be
possible to perform cheap and early detection on the Glass
device that verifies that task state has not changed. Us-
ing the concept of offload shaping [7], those frames can be
dropped before transmission from Glass.
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